C66x KeyStone Training
HyperLink

#i3 TExAs INSTRUMENTS

* Overview

* Address Translation
 Configuration

e Performance

e Example

Agenda

#i3 TExAs INSTRUMENTS

Multicore Training

Overview

* Overview
 Address Translation
 Configuration

e Performance

e Example

i3 TEXas INSTRUMENTS Multicore Training

Overview: What is HyperLink?

High-speed chip-to-chip interface that connects...
* Keystone devices to each other
or
e Keystone device to an FPGA

Key Features and Advantages
* High-speed -- 4 lanes at 12.5 Gbps/lane
* Low power -- 50% less than similar serial interfaces
* Low latency, low protocol overhead and low pin count
* Industry-standard SerDes

KeyStone KeyStone
HyperLink

. KeySt
KeyStone HyperLink eyStone
: TCl6614 . C6678
* *i

1 Cortex A8 4 — 8 DSP cores
4 DSP cores

i3 TEXas INSTRUMENTS Multicore Training

Overview: Example Use Case with 6678

Device A sends packet frame to
Device B for processing and
receives result; Both transactions
via HyperLink.

Enables scalable solutions with
access to remote CorePacs to
expand processing capability.
Device B acts as codec
accelerator in this case.

Reduce system power

[

consumption by allowing
users to disable I/0O and

Core O Core 4
Local L2 Local L2
Core 1 Core 5
Local L2 Local L2
Core 2 Core 6
Local L2 Local L2
Core 3 Core 7
Local L2 Local L2
Shared L2
. Queue
HyperLink I

[

peripherals on remote device.
* Device A: all peripherals active
* Device B: only HyperlLink active

Core O Core 4

Local L2 Local L2
Core 1l Core 5

Local L2 Local L2
Core 2 Core 6

Local L2 Local L2
Core 3 Core 7

Local L2 Local L2

Shared L2
Queue .

SRIO VTR HyperLink

Packet
Accelerator DDR3

SGMII

i

AN

16-bit wide DDR3

16-bit wide DDR3

#i3 TExAs INSTRUMENTS

Multicore Training

Overview: HyperLink External Interfaces

Device A Device B
PM
o or 4 SerDes Lanes—y RX
o FL 5|
Ez) HyperLink PM HyperLink Ez)
3, RX &1 ¢or4 SerDes Lan > @
® O
A 7y

Data Signals SerDes-based
 1-lane or 4-lane mode, with 12.5 Gbps data rate per lane

Control Signals LVCMOS-based
* Flow control (FL) and Power Management (PM)

* Auto managed by HyperLink after initial, one-time configuration by user
 FL managed on per-direction basis; RX sends throttle to TX
 PM dynamically managed per-lane, per-direction based on traffic

i3 TEXas INSTRUMENTS Multicore Training

Overview:

e — T =
i Application-Specific
‘ Memory Subsystem \ Coprocessors
—tp| o B4BI | G — MSM —
< ; | DDR3 EMIF SRAM | || <P
‘» MSMC ||
= «—>
< vfoabug s T+
| >
S h
semapnore]«— > o6 -«
Power | <4 CorePac
Management] 4——>
PLL «> L1 L1
_I 3 P-Cache | D-Cache |||}/ >
Rag «—>
x3 1 to 8 Cores @ up to 1.25 GHz A
.
< HyperLink TeraNet l
A A A A A
| > Multicore Navigator
> | Queue Packet
———”|| Manager DMA
v v ¥V v v ¥YyVy A
<
[‘;é gg . 5 < ¥
@ &) E allRe £0o « p Security
S|l || 2 <] e 85l o RS S Accelerator
5 Ol D X1l £ 2l £
o Ean|| » L H
D «p Packet
: Accelerator
=
"’A Network Coprocessor

HyperlLink and TeraNet

C66x CorePacs, EDMA &
peripherals are interconnected
via TeraNet switch fabric

HyperLink seamlessly extends
TeraNet from one device to
another

Enables read/write
transactions, as well as relaying
& generation of interrupts
between devices

#i3 TExAs INSTRUMENTS

Multicore Training

Overview: TeraNet Connections

* (C66x CorePacs, EDMA & peripherals classified as master or slave
 Master initiates read/write transfers. Slave relies on master
* HyperLink master and slave ports connected via TeraNet 2A

7 |
Bridge_8 I
Bridge_9 '

v

v

From TeraNet_3_A

\4

v

— - u |

Bridge_10 |

v

v

- = |

e e e e e e s e en Em s e e e e e e el

HyperLink [M |

EDMA

TC 0

v

CCo

TC_1

M
M

Yy v

’7 #i3 TExAs INSTRUMENTS

TeraNet2 A CPU/2

|

STses) M IS

S

MSMC |M—>| DDR3

SMS

|—>| Tracer_MSMCO |

| Tracer_ MSMC1 |

| Tracer_MSMC2 |

—>| Tracer_MSMC3 I

—>| Tracer_DDR I

»| S | HyperLink

=| Bridge_3

|
|
:
: To TeraNet_3_A
L}
I
|
|
I

Multicore Training

Overview: HyperLink Interrupts

64 interrupt inputs to HyperLink module:
* 0-31 from Chip Interrupt Controller (CIC) # 3
= CIC3 events include GPIO, Trace, & Software-Triggered

* 32-63 from Queue manager (QMSS) pend event

> >
I
If intlocal = 0, then I If intlocal =0
send interrupt packet I send interrupt packet
to remote device i to remote device
I
: - | : -
If intlocal =1 Interrupt vusr_ I If intlocal = 1 Interrupt vusr_
Status INTO I Status INTO
Register I Register
; = 32 bits 32 bits
blbyzsai =0 () i If int2cfg = 1 ()
I
I
If int2cfg = 0, write to CIC : If int2cfg = 0, write to CIC
I
i
Multicore Training

®i3 TEXAS INSTRUMENTS

Overview: HyperLink Interrupts

>
Event # 111 <l
vusr_INT_O
>
______ CIC1
Event # 111
vusr_INT_O
CIC2
>
Event # 44 ez
vusr_INT_O

Input Events to Core 0, 1,2 & 3

Input Events to Core 4,5,6 & 7

Input Events to HyperLink & EDMA3 CCO

i Input Event to EDMA3 CC1 & CC2
i 32 Input Events from CIC3 R
32 Input Events from Qpend HyperLink

#i3 TExAs INSTRUMENTS

Multicore Training

Overview: Packet-based Protocol

* Hyperlink offers a packet-based transfer protocol that supports multiple
outstanding read, write and interrupt transactions

e Users can use HyperLink to:
- Write to remote device memory
Read from remote device memory
Generate events / interrupt in the remote device

* Read/Write transactions with 4 packet types
Write Request / Data Packet

Write Response Packet (optional)

Read Request Packet

Read Response Data Packet

* Interrupt Packet passes event to remote side

* 16-byte packet header for 64-byte payload, and 8b/9b encoding

i3 TEXas INSTRUMENTS Multicore Training

Address Translation

Overview

Address Translation
Configuration
Performance
Example

#i3 TExAs INSTRUMENTS

ulticore Training

Address Translation: Motivation

Device A (Tx) can view max. 256MB of Device B (Rx) memory**,

Tx side: HyperLink memory space is 0x4000_0000 to Ox4FFF_FFFF

Rx side: HyperLink memory space is device dependent, but typically somewhere
in the Ox0000_0000 to OxFFFF_FFFF address range

For example: DDR 0x8000_0000 to Ox8FFF_FFFF

Requires mechanism to convert local (Tx) address to remote (Rx) address

The local side (Tx side) manipulates the address, the remote side (Rx) does
address translation

Core N Core N
Local L2 Local L2
~ Window
5 0x40000000
DDR o 4FFFFFFF HyperLink
= (256MB)
Device A Device B

** For each core

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Write Example

Local Device HyperLink: Transmit (Tx)

Write command to
outbound FIFO

Overlay control info.
onto address

Slave receives
write transaction

Outbound
Cmd. FIFO

Address
Translation

HyperLink

Slave Port

Encode, serialize & transmit
packet to remote device

Hardware

Remote Device HyperLink: Receive (Rx)

Store received
packet to inbound
FIFO

Inbound Cmd.
FIFO

Generate new memory
mapped address and
control info.

Address
Translation

Initiate write
operation

HyperLink

Master Port

Receive, de-serialize and

decode packet

Hardware

®i3 TEXAS INSTRUMENTS

Multicore Training

Address Translation on Remote Side

* HyperLink supports up to 64 different memory segments at Rx.
* Segment size — Minimum 512 bytes, Maximum 256 MB

 Segments have to be alighed on 64 KB (0x0001 0000) boundary, which
implies that the least-significant 16 bits of segment base address is
always 0.

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Segmentation

Number of bits used to represent address offset and number of bits used to choose

segment depend on size of largest segment.

Largest Segment Number of Bits for Maximum Number Number of Bits to
Size in Bytes Address Offset of Segments** Choose Segment
(Power of 2)

256 MB 28 1=270 0
OXOFFF_FFFF
128 MB 27 2=2M 1
OxO07FF_FFFF
8 MB 23 32 =275 5
Ox007F _FFFF
4 MB 22 64 = 26 6
Ox003F_FFFF
2 MB 21 64 = 26 6
Ox001F FFFF
16 KB 14 64 = 26 6
0x0000_3FFF

#i3 TExAs INSTRUMENTS

** single core point of view

Multicore Training

Address Translation: Considerations

TX side does not have to know the internal
architecture of the RX side.

The system was designed to be “generic” to enable
support for future device architectures (for
example, larger window).

Result — Address translation is more generic and

thus a little complex. This presentation will try to
simplify it.

#i3 TExAs INSTRUMENTS

Address Translation: Overload

Overload means using the
same bit for more than
one purpose.

4 bits of Index

Result — Look up tables
. . . . Additiona
might require duplication. | bit

Example —if index to
lookup table shares a bit
with other value (security

bit) the table must be Value in the table in index
/ Oxxx must be the same as

duplicated. the value in 1xxx

#i3 TExAs INSTRUMENTS

Multicore Training

Address Manipulation: Tx Side Registers

Tx Address Overlay Control Register

User configures PrivID / Security bit overload in this register
Register is at address HyperLinkCfgBase + Ox1c. For 6678 that is 0x2140_001c
If using HyperLink LLD, hypInkTXAddrOvlyReg s represents this register

31 20 19 16 15 12 11 8 7 4 3 0

Reserved txsecovl Reserved | txprividovl | Reserved | txigmask

R R/W R R/W R R/W

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Tx Side Registers

Register Purpose Range
Field

txigmask Selects mask that is logically ANDed to incoming address. Mask varies from
Determines what address bits will be sent to remote side. Ox 01ffff (value 0)
Examples: 0 = mask = 0x0001_FFFF, 10 = mask = to
OxO7FF_FFFF OXFFFFFFFF (value 15)
txprividovl Selects where PrivID will be placed in outgoing address 4 4 bits (from 17-20 to
Example: 12 - TxAddress [31-28] = PrivID [3-0] 28-31)
3 bits (29-31)
2 its (30-31)
1 bit (31)
0 —no priviD
txsecovl Selects where Security Bit is placed in outgoing address 4 No security bit

1 bit (from bit 17 to 31)

Remember the Overloads!!!

®i3 TEXAS INSTRUMENTS Multicore Training

Address Manipulation: Tx Side

Objective: Overlay control information onto address field. Control information
consists of PrivIiD index and Security bit:

* PriviD index indicates which master is making the request.
= PriviD index is 4 bits.
= PriviD (on RX side) value is usually OxD if request from core; OxE if from
other master
e Security bit indicates whether the transaction is secure or not.

Secure Bit PriviD HyperLink Address

Controlled by TX Address
Overlay Control Register

Overlay field Lower Portion of HyperLink Address

Outgoing Hyperlink Address

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Rx Side Registers

Rx Address Selector Control Register
® Register is at address HyperLinkCfgBase + 0x2c. For 6678, that is 0x2140 _002c
® |If using HyperLink LLD, hyplnkRXAddrSelReg s represents this register

Rx Address Selector Control Register (more details in HyperLink User’s Guide)

31 26 25 24 23 20 19 16 15 12 11 8 7 4 3 0
Reserved | rxsechi | rxseclo | Reserved rxsecsel | Reserved rxprividsel Reserved rxsegsel
R R/W R/W R R/W R R/W R R/W

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Rx Side Registers

Register Purpose
Field

rxsechi Deals with secure signal 0-1

rxseclo Deals with secure signal 1 0-1

rxsecsel The overlay location of the secure signal bit 4 16-31

rxsegsel Selects which bits of the incoming RxAddress to use as 4 6 bits (17-22 to 26-31)
an index to lookup segment length and size from the 5 bits (27-31)
Segment LUT. 4 bits (28-31)
Depends on max. segment size. 3 bits (29-31)
Example: rxsegsel=6 = use RxAddress [27-22] as index 2 bits (30-31)
to LUT and the offset mask is 3fffff (22 bits offset 1 bits (31)
address) 0 bits

rxprividsel Selects which bits of the incoming RxAddress to use as 4 4 bits (17-20 to 28-31)
PrivID index PrivID index is used as the row # to lookup 3 bits (29-31)
PrivID value from LUT 2 bits (30-31)
Example: rxprividsel=12 = RxAddress [31-28] as index to 1 bit (31)
LUT 0 bits

Remember the Overloads!!!

®i3 TEXAS INSTRUMENTS Multicore Training

HyperLink User’s Guide — rxsegsel
http://www.ti.com/lit/sprugw8

Table 3-10 gives the rxsegsel values. A typical line looks like the following:

if rxsegsel = 6 use RxAddress 27-22 as index to lookup segment/length table, use 0x003fffff as offset mask

i3 TEXas INSTRUMENTS Multicore Training

——RxSecSel»
—RxSegSel—p
—RXxPrividSel-»

Address Translation: Rx Side

Objective: Regenerate address mapped to remote memory space, along with

Security bit and PrivID from incoming address, based on values in Rx Address
Selector Control Register and LUTs.

Incoming Hyperlink Address

Upper
address field

Secure bit—m

—Segment Index

——PrivID Index

Lower Portion of Incoming Hyperlink Address

PriviD
LUT

PrivID value 0

PrivID value 1

PrivID value 15

—{ +

Seg value 0
Seg value 1
Segment
LUT Seg Value 63

Outgoing Hyperlink Address

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Rx Side LUTs

SEGMENT LUT

hyplnkRXSegThl t [numSegments], with numSegments<=64 & power of 2

Each entry in the LUT consists of:

» 16-bit rxSegVal, the upper 16-bits of each

segment’s base address

e 5-bit rxLenVal, which represents the segment size

as per table on the right and a mask

Example Scenario

4 segments, 4 MB each, with base addresses:
» 0x8000_0000

» 0x8200_0000

» 0x8400_0000

» 0x8600_0000

Then Segment LUT will be:

rxLenVal Size
0-7 0
8 512B
21 4AMB
27 256MB

0
1
2
3

0x8000
0x8200
0x8400
0x8600

21
21
21
21

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Rx Side LUTs

Privilege ID LUT
hyplnkRXPrivTbl t [numPriv], with numPriv <=16 & power of 2

Each entry in the LUT consists of:
* A value between 0-15 that represent the privilege ID of the master
 Common use, value D if comes from any core, E if from any other master

i3 TEXas INSTRUMENTS Multicore Training

Examples

We will now present several examples that can be used on KeyStone
devices with the following limitations:
* No security bit
e The privilege ID index is in the 4 MSB of the address; bits 28-31
* We will cover the RX overlay registers, and the different LUTs
* Onthe TXside, always send the upper 28 bits, so that:
= txsecovl=0
= txprividovl = 12 (bits 28-31)
= txigmask = 11 (OxOfffffff)

31 20 19 16 15 12 11 8 7 4 3 0

Reserved txsecovl Reserved | txprividovl | Reserved | txigmask

000000000000 0 0000 1100 0000 1011

i3 TEXas INSTRUMENTS Multicore Training

RX Side, Privilege LUT

The look-up table shown is for a privID with the Index Value
following characteristics: 0 D = 1101
* All remote cores will have PrivID of D 1 D = 1101
e All other masters have ID of E 2 D= 1101
* 4 bits are used to express the PrivID index 3 D = 1101
4 D = 1101
Questions: 5 D = 1101
* What happens if there is a security bit in bit 6 D =1101
location 287 7 D = 1101

* What if the security bit is in bit location 317 3 E=1110

9 E=1110

NOTE: KeyStone Il uses a fixed PrivID for remote 10 E=1110
HyperLink access. We strongly suggest the user 11 E=1110
fill all tables with the value OxE (KeyStone Il 12 E=1110
fixed value). 13 E=1110

14 E=1110

15 E=1110

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Example 1 (1/2)

Problem Statement: Build the Segment LUT for the following:

* Remote DDR 0x8000 0000 - Ox8FFF_FFFF

* One 256MB segment

* Accessible by all 16 masters on the local side

Solution:

1. Because the segment size is 256M, the offset mask must be
OxOfff ffff and thus, rxsegsel = 12. The index to lookup table
is bits 28-31, and OxOfffffff is the mask

2. It looks like the table should have only one, segment O,

rxSegVal = 0x8000, and rxLenVal = 27

No security bit

4. Privilege index can be any number from 0 to 15. In this
example, (and all examples in the presentation), we use
rxprividsel = 12; That is, bits 28-31.

5. Notice the overlay of the master privilD on the index.

This means that the segment index can be any number
between 0 and 15. So the first line must be repeated 16
times.

w

rxLenVal | Size
0-7 0
8 512
B
21 4M
B
27 256
MB

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Example 1 (2/2)

N o o BN R O

0x8000
0x8000
0x8000
0x8000
0x8000
0x8000
0x8000
0x8000

27
27
27
27
27
27
27

10
11
12
13
14
15

0x8000
0x8000
0x8000
0x8000
0x8000
0x8000
0x8000
0x8000

27
27
27
27
27
27
27

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Rx Side Example 1

* Choose a read or write address from Core 5 and address 4567 89a0:
* HyperLink Tx side builds the following address: 5567 89a0
* Following the previous example, what address will be read?

Received address

Bit 31:28 as priviD 0x5567 89A0

|

""""""""""""""""""""""""" ~-index=0b0101
<
. . Segment index is in Segment Value | Mask/Length
PrvID Mapping Table bits 28-31 50 itis 5 0 DXOFFF FEFF
0
] 5 B 08000 | OXOFFFFFFF |
K 763 | | |
PriviD =13
Output address = 0x8000_0000+0x5567_89A0 & OxOFFF_FFFF
=0x8567_89A0
14

Multicore Training

#i3 TExAs INSTRUMENTS

Address Translation: LUT Example 2

Problem Statement: Build the Segment LUT for the following scenario:

S

1.

w

8 segments
Each segment of size 0x0100 0000 (16MB) at 0x8000_0000,
0x8200_0000, ... 0x8EO00_0000
olution
Because the segment size is 16 M, the offset mask must be Ox00ff ffff
and thus, rxsegsel = 8. The index to lookup table is bits 24-29, and
OxOOffffff is the mask.
The table should have 8 rows, each starting on a different address
(0Ox8000_0000, 0x8200 0000, etc.), and a len of 23.
No security bit

4. Privilege index can be any number from 0 to 15. In this example, (and

all examples in the presentation) we use rxprividsel = 12; That is, bits
28-31.

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: LUT Example 2

5. Notice the overlay of the master PriviD on the index. The last 2 bits of
the index (bit 28-29) can be any value. So repeat the 8 rows 4 times

at indexes XXYAAA, where A is the index into the table, A is

supposed to be zero, and XX may be any number.
6. To prevent reading a wrong address, load the table rows in the lines

that have Y=1 with zero memory.

o U A W N -, O

7

0x8000
0x8200
0x8400
0x8600
0x8800
Ox8A00
0x8C00
Ox8EOO

23
23
23
23
23
23
23

10
11
12
13
14
15

0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

O O O O O o o o

The table
to the left
will be
repeated
four
times:
16-31,
32-47,
48-63

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Rx Side Example 2

* Choose a read or write address from Core 7 and address 4567 89a0

* HyperLink Tx side builds the following address: 7567 89a0
* Following the previous example, what address will be read?

Received address

Bit 31:28 as priviD 0x7567 89A0

Output address = 0x8A00_0000+0x7567_89A0 & Ox0OFF_FFFF

"""""""""""""""""""""""""" ~Index=0b0111
Segment index is in
. . bits 24-29 so it is 53
PrivID Mapping Table which is the
0 duplication of line 5
1
2
4
PriviD =13
=0x8A67_89A0
14

53

|

Segment Value Mask/Length
0x8000 0xOFFF FFFF
0x8A00 OxQOFF FFFF |

Multicore Training

#i3 TExAs INSTRUMENTS

Address Translation: LUT Example 3

Problem Statement: Build the Segment LUT for the following scenario:

* 8segments

e 7 of size 16MB at 0x8000_0000, 0x8100_0000

e 1 of size 32MB at 0x8700_0000

Solution:

1. Because the maximum segment size is 32M, the offset mask must be
Ox01ff ffff and thus, rxsegsel = 9. The index to lookup table is bits
25-30 and 0x001fffff is the mask for the 32M. However, for the smaller
size, the mask is different. For 16M, the mask is Ox000f ffff.

2. The table should have 8 rows, each starting on a different address

(0x8000_0000, 0x8100_0000, etc.), and len of 23 where the last one

will have len of 24.

No security bit

4. Privilege index can be any number from 0 to 15. In this example, (and
all examples in the presentation) we use rxprividsel = 12; That is, bits
28-31.

w

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: LUT Example 3(2)

5. Notice the overlay of the master PriviD on the index. The last 3 bits of
the index (bit 28-30) can be any value. So we must repeat the 8 rows

8 times.

nsegVal niSegVal The table to

N o o AW N R O

0x8000
0x8100
0x8200
0x8300
0x8400
0x8500
0x8600
0x8700

23
23
23
23
23
23
24

10
11
12
13
14
15

0x8000
0x8100
0x8200
0x8300
0x8400
0x8500
0x8600
0x8700

23
23
23
23
23
23
24

the left will
be repeated
8 times

8-15, 16-23.
24-31, 32-39,
40-47, 48-55,
56-63

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Rx Side Example 3

* Choose a read address from master with privilege 8 and address 4567 89a0.
* HyperLink Tx side builds the following address: 8567 89a0
* Following the previous example, what address will be read?

| _ Received address
Bit 31:28 as priviD 0x8567 89A0

|

e index=0b1000
. . Segment index is in Segment Value Mask/Length
PrvID Mapping Table bis 25-30 soitis 2 0 DXOFFF FEFF
0
% 2 _ 0x8200 OxQ0FF FFFF |
S\l
PriviD = 14
Output address = 0x8200_0000+0x8567 89A0 & 0x00FF FFFF
=0x8267 _89A0
14

Address Translation: LUT Example 4

Problem Statement: Build the Segment LUT for C6678 device with the

following scenario:

* 9segments

 1stsegment of 4AMB in MSMC

« 2ndto 9th segments of 512KB in L2 memory of each core

Solution:

1. Because the maximum segment size is 4M, the offset mask must be
0x003f ffff and thus, rxsegsel = 6. The index to the lookup table is bits
22-26 and 0x03f ffff is the mask for the 4M. However, for the smaller
size, the mask is different. For 512K, the mask is 0x07 ffff.

2. The table should have 16 rows. The first one starts at 0x0cO0 0000

with len of 21 (4M), 8 rows each starting at OxIN80 0000 (N =0to 7)

with len of 18, and 7 dummy rows of len=0.

No security bit

4. Privilege index can be any number from 0 to 15. In this example, (and
all examples in the presentation), we use rxprividsel = 12; That is, bits
28-31.

w

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: LUT Example 4(2)

No overlay ... but to prevent errors, you must either:
* Fill the table with zero rows

* Duplicate the 16 rows 4 times.

or

N o o B W N -, O

0x0CO00
0x1080
0x1180
0x1280
0x1380
0x1480
0x1580
0x1680

18
18
18
18
18
18
18

9
10
11
12
13
14
15

0x1780
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

In this example, we duplicate the 16 rows 4 times

O O O O O o o

#i3 TExAs INSTRUMENTS

Multicore Training

Address Translation: Rx Side Example 4

* Choose a read address from Core 1 and address 4567 89a0.
* HyperLink Tx side builds the following address: 1567 89a0
* Following the previous example, what address will be read?

Received address

UBE3128aspivD gq567 89A0

PriviD Mapping Table

index=0b0001
>

13

0
1
2
3

14

Segment index is in
bits 22- 26 so it is 21

PriviD =13

Output address = 0x1480_0000+0x8567_89A0 & 0x0003_FFFF

=0x1483_89A0

21

|

Segment Value Mask/Length
0x0c00 0x01F FFFF
0x1480 0x9-003 FFFF |

Address Translation: Rx Side Registers

Five registers control the behavior of the Rx side:

1. Rx Address Selector Control (base + 0x2c)
Controls how the address word is decoded; hypIinkRXAddrSelReg s

2. Rx Address PrivID Index (base + 0x30)
Used to build/read Privilege Lookup Table; hyplnkRXPrivIDIdxReg s

3. Rx Address PrivID Value (base + 0x34)
Used to build Privilege Lookup Table; hypInkRXPriviDValReg s

4. Rx Address Segment Index (base + 0x38)
Used to build/read Segment Lookup Table; hyplnkRXSegldxReg s

5. Rx Address Segment Value (base + 0x3c)
Used to build Segment Lookup Table; hyplnkRXSegValReg s

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Rx Side Registers

To program the LUT:
» Write to Rx Address PriviID/Segment Index Register.

» Write to Rx Address PriviD/Segment Value Register, which will populate
the corresponding index in the LUT with this value.

To check LUT content:
» Write to Rx Address PriviID/Segment Index Register.

* Read Rx Address PrivID/Segment Value Register, which will return
value from LUT for index specified in Index Register.

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Summary

Translation process inputs on the local/transmit side:
1. 28 bits of remote address (the upper 4 bits are 0x4)
2. Privilege ID and Secure Bit

Process information sent from local to remote/receive side:
1. Lower portion of remote address — offset into segment
2. Segment Index
3. Privilege ID
4. Secure Bit

Translation process outputs on the remote/receive side:
1. Complete remote address
2. Privilege ID

i3 TEXas INSTRUMENTS Multicore Training

Configuration

Overview

Address Translation
Configuration
Performance
Example

#i3 TExAs INSTRUMENTS

Multicore Training

Configuration: Typical Flow

Application typically follows this flow to enable & configure HyperLink:

1.

PLL, Power, and SerDes:

a)
b)
c)
d)

Setup PLL.
Enable power domain for HyperLink.
Configure SerDes.

Confirm that power is enabled.

Register Configurations:

a)
b)

C)

Enable HyperLink via HyperLink Control Register (base + 0x4).

Once the link is up, both devices can see each other’s registers.
Here there are three choices:

. Device configures own registers
ii. One master programs registers for both devices
iii. Direction-based

Register configuration involves specifying address translation scheme on
Tx and Rx side, and any event/interrupt configuration.

i3 TEXas INSTRUMENTS Multicore Training

Configuration: APlIs

Chip Support Library (CSL) and HyperLink Low-Level Drivers (LLD) make
available APIs that can be used to configure HyperLink.

General recommendations:
* Wherever LLD functions are available to do something, use LLD.
 |f LLD API does not exist for what you want to achieve, use CSL.

 Leverage functions from the HyperLink LLD example project.

i3 TEXas INSTRUMENTS Multicore Training

Configuration: Typical Flow, Step 1

1. Enable power domain for peripherals using CSL routines.
Enabling power to peripherals involves the following four functions:

CSL_PSC _enablePowerDomain()
CSL_PSC setModuleNextState()
CSL_PSC startStateTransition()
CSL_PSC isStateTransitionDone()

2. Reset the HyperLink and load the boot code for the PLL.
Write 1 to the reset field of control register (address base + 0x04)

CSL_BootCfgUnlockKicker();
CSL_BootCfgSetVUSRConfigPLL ()

3. Configure the SERDES.
CSL_BootCfgVUSRRxConfig()
CSL_BootCfgVUSRTxConfig()

i3 TEXas INSTRUMENTS Multicore Training

A o

Configuration: Typical Flow, Step 2

HyperLink Control registers
Interrupt registers

Lane Power Management registers
Error Detection registers

SerDes Operation registers
Address Translation registers

#i3 TExAs INSTRUMENTS

Multicore Training

Configuration: HyperLink LLD APIs

hyplnkRet_e Hyplnk _open (int portNum, Hyplnk_Handle *pHandle)

Hyplnk_open creates/opens a HyperLink instance.

hyplnkRet_e Hyplnk close (Hyplnk Handle *pHandle)

Hyplnk_close Closes (frees) the driver handle.

hyplnkRet_e Hyplnk_readRegs (Hyplnk Handle handle, hyplnklLocation_e location, hyplnkRegisters_t
*readRegs)

Performs a configuration read.

hyplnkRet e Hyplnk writeRegs (Hyplnk Handle handle, hyplnkLocation e location, hyplnkRegisters t
*writeRegs)

Performs a configuration write.

hyplnkRet_e Hyplnk_getWindow (Hyplnk_Handle handle, void **base, uint32_t *size)

Hyplnk_getWindow returns the address and size of the local memory window.

uint32_t Hyplnk getVersion (void) Hyplnk_getVersion

returns the HYPLNK LLD version information.

const char * Hyplnk_ getVersionStr (void) Hyplnk getVersionStr
returns the HYPLNK LLD version string.

i3 TEXas INSTRUMENTS Multicore Training

Configuration: HyperLink LLD Example API

hypinkRet_e Hypink_writeRegs (Hypink_Handle handle,
hypinkLocation_e location,
hypinkRegisters t* writeRegs

)

Performs a conﬁguration write.
Writes one or more of the device registers

It is the users responsibility to ensure that no other tasks or cores will modify the registers while they are read, or betwen the time
the registers are read and they are later written back.

The user will typically use Hypink_readRegs to read the current values in the registers, modify them in the local copies, then write
back using Hypink_writeRegs.

It is guaranteed that all registers can be written together. The actual ordering will, for example, write index registers before the
associated value registers

On exit, the actual written values are returned in each register's reg->raw.

Since the peripheral is shared across the device, and even between peripherals, it is not expected to be dynamically reprogramed
(such as between thread or task switches). It should only be reprogrammed at startup or when changing applications. Therefore,
there is a single-entry API instead of a set of inlines since it is not time-critical code.

Return values:
hypinkRet e status

Parameters:
handle [in] The HYPLNK LLD instance identifier
location [in] Local or remote peripheral
writeRegs [in] List of registers to write

#i3 TExAs INSTRUMENTS Multicore Training

Configuration: HyperLink LLD Data Structures

hyplnkChipVerReg_s Specification of the Chip Version Register

hyplnkControlReg_s Specification of the HyperLink Control Register
hypInkECCErrorsReg_s Specification of the ECC Error Counters Register
hyplnkGenSoftintReg_s Specification of the HyperLink Generate Soft Interrupt Value Register
hyplnkintCtrlidxReg_s Specification of the Interrupt Control Index Register
hyplnkintCtrIValReg_s Specification of the Interrupt Control Value Register
hyplnkintPendSetReg s Specification of the HyperLink Interrupt Pending/Set Register
hyplnkIntPriVecReg_s Specification of the HyperLink Interrupt Priority Vector Status/Clear Register
hyplnkintPtridxReg_s Specification of the Interupt Control Index Register
hyplnkintPtrValReg_s Specification of the Interrupt Control Value Register
hyplInkintStatusClrReg_s Specification of the HyperLink Interrupt Status/Clear Register
hyplnkLanePwrMgmtReg_s Specification of the Lane Power Management Control Register
hyplnkLinkStatusReg_s Specification of the Link Status Register

hyplnkRegisters_s Specification all registers

hypInkRevReg_s Specification of the HyperLink Revision Register
hypInkRXAddrSelReg_s Specification of the Rx Address Selector Control Register
hyplnkRXPriviDIdxReg_s Specification of the Rx Address PrivID Index Register
hypInkRXPriviDValReg_s Specification of the Rx Address PrivID Value Register
hyplnkRXSegldxReg s Specification of the Rx Address Segment Index Register
hyplnkRXSegValReg_s Specification of the Rx Address Segment Value Register
hypInkSERDESControl1Reg_s Specification of the SerDes Control And Status 1 Register
hypInkSERDESControl2Reg_s Specification of the SerDes Control And Status 2 Register
hyplnkSERDESControl3Reg_s Specification of the SerDes Control And Status 3 Register
hypInkSERDESControl4Reg_s Specification of the SerDes Control And Status 4 Register
hyplnkStatusReg_s Specification of the HyperLink Status Register
hypInkTXAddrOvlyReg_s Specification of the Tx Address Overlay Control Register

#i3 TExAs INSTRUMENTS Multicore Training

Performance

Overview

Address Translation
Configuration
Performance
Example

#i3 TExAs INSTRUMENTS

Multicore Training

HyperLink Performance

Silicon Results with C6678

Theoretical bound is 35.56 Gbps

Results are in 31.39 — 34.53 Gbps range

Payload Payload No. of Actual Throughput
(bytes) (bits) Lanes SRC/DST AET for Wr (Wr) Gbps
4096 | 32708 4 L2/DDR3 954 34.35
g192 | 69936 4 L2/DDR3 2088 31.39
16384 | 131072 4 L2/DDR3 3975 32.97
32768 | 262144 4 12/DDR3 7592 34.53

#i3 TExAs INSTRUMENTS

Multicore Training

Example

* Overview
 Address Translation
 Configuration
 Performance

« Example

i3 TEXas INSTRUMENTS Multicore Training

HyperLink Example: Demo

 When you install TI’s Multicore Software Development Kit (MCSDK), one of the
packages it installs is the Platform Development Kit (PDK).

* Path to example: pdk_c6678 x_x_x xx\packages\ti\drv\exampleProjects
\hyplnk exampleProject

* Example can be run in loopback mode
on one 6678, or in 6678-t0-6678 mode

* The mode is defined using a loopback
flag in header file hyplnkLLDCfg.h, as:

#define hyplnk EXAMPLE LOOPBACK

* We will now switch to CCS to run the
example in a board-to-board mode. The
two 6678 EVMs are connected with a
HyperLink external cable, as shown in
the picture.

#i3 TExAs INSTRUMENTS Multicore Training

HyperLink Example: Leverage Functions

Useful configuration functions are part of the HyperLink example
and can be used “as is” or be modified by users.

PDK INSTALL PATH\ti\drv\hyplnk\example\common\hyplnkLLDIFace.c

« Some of the configuration functions are:

hyplnkRet e hyplnkExampleAssertReset (int wval)

Void hyplnkExampleSerdesCfg (uint32_ t rx, uint32 t
tx)

hyplnkRet e hyplnkExampleSysSetup (void)

Void hyplnkExampleEQLaneAnalysis (uint32 t lane,
uint32_t status)

hyplnkRet e hyplnkExamplePeriphSetup (void)

#i3 TExAs INSTRUMENTS

Multicore Training

For More Information

Refer to the Keystone HyperLink User’s Guide

Connect HyperLink C66x to FPGA using the

Integretek IP-HyperLink core.

Device-specific Data Manuals for the KeyStone SoCs can
be found at Tl.com/multicore.

Multicore articles, tools, and software are available at
Embedded Processors Wiki for the KeyStone Device
Architecture.

View the complete
C66x Multicore SOC Online Training for KeyStone Devices,
including details on the individual modules.

For questions regarding topics covered in this training, visit
the support forums at the
TILE2E Community website.

#i3 TExAs INSTRUMENTS

Multicore Training

BACKUP SLIDES

#i3 TExAs INSTRUMENTS

Multicore Training

HyperLink Performance: Theoretical bound

Theoretical bound calculation on write throughput for HyperLink:

6678 does 8b/9b encoding, therefore
Useful data bandwidth = 50 x 8 / 9 = 44 .44 Gbps

16bytes header for every 64bytes of data (max. write burst)
Effective max. data write throughput = 44.44 * 64/(64+16)
= 35.56 Gbps

i3 TEXas INSTRUMENTS Multicore Training

Overview: TeraNet Connections & Interrupts

32 Secondary
Events from

32 Queue CP INTC
Pending Signals -

Core 0

DDR MSMC o)
=2
5949 :
N HyperLink
gll\) .‘_DD.. PAR
o >
EDMAO -
\A
SRIO Wireless Application
Accelerators
PCle MMR
_|
o)
09
=3
&8
PA S8 < awmss
@ 20
S|
>
<— EDMA2
EDMA1
L2

#i3 TExAs INSTRUMENTS Multicore Training

Overview: HyperLink Interrupts

« Detection - detected an interrupt to the HyperLink local
device that was generated either as software interrupt
(writing to interrupt register) or as hardware

 Forward — generate an interrupt packet and send it to the
remote unit

 Mapping —receive an interrupt packet from the remote and
forward it to the configure location in the local device

 Generating — generate an interrupt in the local device

i3 TEXas INSTRUMENTS Multicore Training

Address Translation: Block Diagram

VBUS

VBUS Clock <—

——p SERDES Symbol Clock

Slave

VBUS «

Master

SERDES

» TxP

» Sernal
TxData

__ Senal
ata

Adr Translation Outbound <
Outbound Command TxSM PLS
Commands FIFO

§ * TxClk
Re(um
Data :._
FIFO

Registers i |:£| I_d=;|

Rlc;tum - r T

ata
FIFO <

RxClk

Adr Translation Inbound
Inbound Command RxSM 4] PLS
Commands FIFO gt

» RxP

#i3 TExAs INSTRUMENTS

Multicore Training

Protocol: Write Operation

VBUS Clock ————p SERDES Symbol Clock

VBUS

Slave

VBUS
Master

VBUS
Slave

VBUS «

Master

#i3 TExAs INSTRUMENTS

Adr Translation Outbound
Outbound Command TxSM . .
Commands FIFO PLS [Serial
TxData
Return
Data
FIFO
Local SERDES
Return
Data
FIFO
Adr Translation Inbound PLS
Inbound Command RxSM
Commands FIFO
VBUS Clock ————p SERDES Symbol Clock
Adr Translation Outbound
Outbound Command TxSM .
Commands FIFO PLS
Return
Data
FIFO
Remote SERDES
Return
Data
IFO
" Serial
Adr Translation Inbound - X R
Inboun Command RxSM PLS ¢ RxData
Commands FIFO

Multicore Training

Address Translation: Rx Side Example 1

Solution Explained

256MB segment - 28-bit offset > mask = OXOFFF_FFFF
0x0567 89a0 address

Bits 28-31 - 0b0101 =5

txigmask = 11 mask OxOFFF_FFFF

Address sent to the receive/remote side = 0x5567_89a0

On the receive side, the address is
0x8000 0000 + 0x0567_89a0 = 0x8567 89a0

Address Translation: Rx Side Example 2

Solution Explained

* 8 segments, each segment of size 0x0100_0000 (16M)

* Addresses start at 0x8000_ 0000, 0x8200 0000, 0x8400 0000,
to Ox8EOO 0000

e 24 bits offset — 0x067_89a0

e Segment number 0101 =5

Row 5 Ox8A00_0000 Size 23 (mask = 0x0O0ff ffff)

On the receive side,
the address is 0x8A00 0000 + 0x0067_89A0 = 0x8A67_89A0

Address Translation: Rx Side Example 3

Solution Explained

* 8 segments, 7 each of size 0x0100_0000 (16M)

* Addresses start at 0x8000 0000, 0x8100_0000, 0x8200_0000, to
0x8600_0000.

* For 8 segments, the maximum size is 32M. That is, 25 bits.

e 25 bits offset, 3 bits segment number 010 = 2

Row 2 0x8200_0000 Size 23 (mask = 0x00ff ffff)

On the receive side,
the address is 0x8200 0000 + 0x0067_89A0 = 0x8267_ 89A0

Address Translation: Rx Side Example 4

Solution Explained

* 9 segments
= The first 8 segments are L2 memory of each core (512K = 19
bits).
= The 9th segment is the MSMC (4M = 22 bits).
* The maximum size is 4M. That is, 22 bits.
* 6 bits to choose the segment (64 segments)
* 22 bits offset Segment number 010101 = 21 7?7?77

Row 5 0x1480 0000 Size 18

On the receive side,
address is 0x1480 0000 + 0x0007 89a0 = 0x1487 89a0 (L2, Core 4)

HyperLink Example: SerDes Configuration

/***

* Sets the SERDES configuration registers
**/
void hyplnkExampleSerdesCfg (uint32 t rx, uint32 t tx)

{
CSL_BootCfgUnlockKicker() ;

CSL BootCfgSetVUSRRxConfig (0, rx);
CSL BootCfgSetVUSRRxConfig (1, rx);
CSL_BootCfgSetVUSRRxConfig (2, rx);
CSL_BootCfgSetVUSRRxConfig (3, rx);

CSL BootCfgSetVUSRTxConfig (0, tx);
CSL BootCfgSetVUSRTxConfig (1, tx);
CSL_BootCfgSetVUSRTxConfig (2, tx);
CSL_BootCfgSetVUSRTxConfig (3, tx);

} /* hyplnkExampleSerdesCfg */

i3 TEXas INSTRUMENTS Multicore Training

